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Solution to Problem Set 9

. Find the Taylor polynomial of degree 3 generated by f(z,y) at the point (0,0) if f(z,y) = e(®+sin2y),
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Therefore, the required Taylor polynomial is 1 + x + 2y + % + 2y + 2y° + % + 2%y + 2zy°.

. Find the Taylor polynomial of degree 6 generated by f(z,y) at the point (0,0) if f(z,y) = In(1 + zsiny).
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Therefore, the required Taylor polynomial is xy — % . Qy + % + ’ Gy + z 3y .

. (Optional) Let f(z,y) = e*+2¥.

/2 r1/2
(a) Evaluate / f(z,y) dx dy.
0 0

(b) i. Find the Taylor polynomial Ps(x,y) of degree 2 generated by f(z,y) at the point (0, 0).

/2 p1/2
ii. Compute / / Py(z,y) dxdy.
0 0
Is it a good approximation of the integral in (a)? Why?
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(b) i. We have
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Therefore, Po(x,y) =1+ x + 2y + % + 22y + 242

ii.
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We can see that the above is a good approximation since Py(z,y) is a good approximation of f(z,y)
around the point (0, 0).

4. Find the absolute maximum and minimum points of the functions on the given domains.

(a) f(x,y) =222 — 4z +y* — 4y + 1 on the triangle bounded by the lines z = 0, y = 2 and y = 2z in the first
quadrant.

(b) f(z,y) = 2® + 2y + y?> — 62 + 2 on the rectangle bounded by the lines x = 0, =5, y = —3 and y = 0.

(¢) f(z,y) = zy on the region D = {(z,y) : © >0,y > 0 and 2 + y* < 4}.

Ans:

(a) Firstly, we have Vf(z,y) = (4o —4,2y —4), so Vf(z,y) = (0,0) when (z,y) = (1,2). Therefore, there is no

stationary point in the interior of the triangle and there is a stationary point (1,2) lying on the boundary.

H(z.y) = [‘0‘ 2]

Furthermore, the hessian matrix of f is



and so

H(12) = [3 g].

Note that det H(1,2) = 8 > 0 and f;(1,2) = 4 > 0, so f attains minimum at (1,2) and we have
£(1,2) = —5.
For the boundary:
d
o Let y1(t) = (0,t) for t € [0,2]. We have f(y1(t)) = t* — 4t + 1 and so ﬁf(%(t)) = 2t — 4. Note
d
that gf('yl(t)) < 0 when 0 < ¢t < 2. Therefore, f attains minimum along 7; when ¢t = 2 and
f(11(2)) = f(0,2) = =3; f attains maximum along v, when ¢t = 0 and f(v1(0)) = £(0,0) = 1.
d
o Let 1o(t) = (t,2) for t € [0,1]. We have f(vy2(t)) = 2t2 — 4t — 3 and so Ef(W(t)) = 4t — 4. Note
d
that af(fyg(t)) < 0 when 0 < ¢t < 1. Therefore, f attains minimum along 72 when ¢ = 1 and
f(y2(1)) = f(1,2) = —5; f attains maximum along v when ¢t = 0 and f(72(0)) = f(0,2) = —3.
d
o Let v3(t) = (¢,2t) for t € [0,1]. We have f(v3(t)) = 6t — 12t + 1 and so ﬁf(vg(t)) = 12t — 12.
d
Note that af(vg(t)) < 0 when 0 < ¢t < 1. Therefore, f attains minimum along v3 when ¢t = 1 and
f(y3(1)) = f(1,2) = —5; f attains maximum along 3 when ¢ = 0 and f(v3(0)) = £(0,0) = 1.
Therefore, the absolute maximum of f is 1 which is attained at (0,0) and the absolute minimum of f is —5
which is attained at (1,2).
Firstly, we have Vf(z,y) = (22 +y — 6,2y + z), so Vf(z,y) = (0,0) when (z,y) = (4,—2). Therefore,
(4, —2) is the only stationary point and it lies in the interior of the rectangle.

Furthermore, the hessian matrix of f is

2 1
H(I,y) = [1 2]
and so
H4,—2) - [j j |

Note that det H(1,2) = 3 > 0 and fz(4,—2) = 2 > 0, so f attains minimum at (4, —2) and we have
£(4,-2) = —10.
For the boundary:
d
o Let v (t) = (0,t) for t € [-3,0]. We have f(y1(t)) = t*> + 2 and so %f('yl(t)) = 2t. Note that

d
%f(’yl (t)) < 0 when —3 < ¢t < 0. Therefore, f attains minimum along v; when ¢t = 0 and f(71(0)) =
£(0,0) = 2; f attains maximum along v; when ¢t = —3 and f(y1(-3)) = f(0,-3) = 11.

o Let yo(t) = (t,0) for t € [0,5]. We have f(y2(t)) = t? — 6t + 2 and so %f(vg(t)) = 2t — 6. Note that

d d

%f(’)/g(t)) < 0 when 0 < t < 3 and af(fyg(t)) > 0 when 3 < t < 5. Therefore, f attains minimum
along v2 when ¢t = 3 and f(712(3)) = f(3,0) = —7; f attains maximum along v when t =0, t = 5, we
have f(y2(0)) = f(0,0) =2 and f(72(5)) = f(5,0) = —3.

d
o Let y3(t) = (5,t) for t € [-3,0]. We have f(y3(t)) = t*> + 5t — 3 and so af(’}’g(t)) = 2t + 5. Note that

d d

%f(’)/g(t)) < 0 when —3 <t < —5/2 and %f(’}/g(t)) > 0 when —5/2 < t < 0. Therefore, f attains
minimum along 3 when ¢t = —5/2 and f(v3(—5/2)) = f(5,—5/2) = —37/4; f attains maximum along
73 when t = 0, t = =3, we have f(73(0)) = f(5,0) = =3 and f(y3(-3)) = f(5,-3) = 9.

o Let v4(t) = (t,—3) for t € [0,5]. We have f(v4(t)) = t> — 9t + 11 and so %f(*m(t)) = 2t — 9.

Note that %f(fm(t)) < 0 when 0 < t < 9/2. Therefore, f attains minimum along -4 when ¢ = 9/2
and f(v3(9/2)) = f
f(14(0)) = £(0,=3) = 11 and f(74(5)) = f(5,—-3) = 9.

(9/2,-3) = —37/4; f attains maximum along 74 when ¢ = 0, ¢ = 5, we have



Therefore, the absolute maximum of f is 11 which is attained at (0, —3) and the absolute minimum of f is
—10 which is attained at (4, —2).

(¢) Firstly, we have V f(x,y) = (y, ), so Vf(z,y) = (0,0) when (z,y) = (0,0). Therefore, there is no stationary

point in the interior of the region D and there is a stationary point (0,0) lying on the boundary.

H(x.y) = [? (1)]

H(0,0) = t} ﬂ .

Note that det H(0,0) = —1 < 0, so (0,0) is a saddle point of f and we have f(0,0) = 0.

Furthermore, the hessian matrix of f is

and so

For the boundary:

e Let v1(t) = (0,t) for t € [0,2]. We have f(v1(t)) = 0 which is a constant function.
o Let y2(t) = (¢,0) for t € [0,2]. We have f(2(t)) = 0 which is a constant function.

d
e Let y3(t) = (2cost,2sint) for t € [0,7/2]. We have f(v3(t)) = 4sint cost = 2sin 2¢ and so af(yg(t)) =

d d
4cos2t. Note that %f(%(t)) < 0 when 7/4 < ¢t < 7/2 and @f("}/g(t)) > 0 when 0 < ¢t < 7/4.
Therefore, f attains minimum along 3 when ¢t = 0, ¢ = 7/2, we have f(y3(0)) = f(2,0) = 0 and
f(v3(m/2)) = £(0,2) = 0; f attains maximum along v3 when t = 7/4 and f(y3(7/4)) = f(V/2,v2) = 2.

Therefore, the absolute maximum of f is 2 which is attained at (\/5, \/5) and the absolute minimum of f
is 0 which is attained at (¢,0) or (0,t) for any ¢ € [0, 2].
5. Among all triangles with vertices on a given circle, find those that have the largest area.
Ans:

Intuition tells us that the equilateral triangles must have the largest area. However, proving this can be quite
difficult unless a good choice of variables in which to set up the problem analytically is made. With a suitable
choice of units and axes we can assume the circle is 22 4+ y? = 1 and that one vertex of the triangle is the point

P with coordinates (1,0). Let the other two vertices, @ and R, be as shown in figure below:

Where should Q and R be to ensure that triangle PQR has maximum area?

There is no harm in assuming that ) lies on the upper semicircle and R on the lower, and that the origin O
is inside triangle PQR. Let PQ and PR make angles 6 and ¢, respectively, with the negative direction of the
x-axis. Clearly 0 < 6 < 7/2 and 0 < ¢ < 7/2. The lines from O to @ and R make equal angles with the line



QR, where 20 + 2¢ + 290 = 7. Dropping perpendiculars from O to the three sides of the triangle PQR, we can

write the area A of the triangle as the sum of the areas of six small, right-angled triangles:
A= 2X %sin@cos& +2x %SiDHCOSQ—‘r 2 % %sinz/}cosw
= 1 (sin 20 + sin 2¢ + sin 2¢)) .
Since 2¢p = m — 2(0 + ¢), we express A as a function of the two variables 6 and ¢:
A:MM&¢)=%QMQ9+Sm2¢+$n%9+¢».

The domain of A is the triangle § > 0, ¢ > 0, 6 + ¢ < /2. A =0 at the vertices of the triangle and is positive

elsewhere. (See the following figure)

/49
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The domain of A(6, ¢)

We show that the maximum value of A(f, ¢) on any edge of the triangle is 1 and occurs at the midpoint of that

edge. On the edge § = 0 we have

A(0,¢) = % (sin ¢ 4 sin 2¢) =sin2¢ <1 = A(0,w/4).

Similarly, on ¢ =0, A(6,¢) <1 = A(n/4,0). On the edge 0 + ¢ = 7/2 we have
A@g—@: 1 (sin 20 + sin(r — 20))
= sin20<1=A(%,%).

47 4

We must now check for any interior critical points of A(6, ¢). (There are no singular points.) For critical points

we have
0= % = c0s 20 + cos(20 + 2¢),
0= % = cos 2¢ + cos(20 + 2¢),

so the critical points satisfy cos 260 = cos ¢ and, hence § = ¢. We now substitute this equation into either of the
above equations to determine 6:
cos20 +cos40 = 0
2c0s%20 +cos20 —1= 0
(2c0s20 —1)(cos20+1)= 0

1
0052925 or cos20= -—1.

The only solution leading to an interior point of the domain of A is § = ¢ = w/6. Note that
A(LT) -1 V3 V3L V3 _3V3
6’6/ 2\2 2 2] 4 ’
this interior critical point maximizes the area of the inscribed triangle. Finally, observe that for § = ¢ = 7/6,

we also have ¢ = 7/6, so the largest triangle is indeed equilateral.



