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1. Find the Taylor polynomial of degree 3 generated by f(x, y) at the point (0, 0) if f(x, y) = e(x+sin 2y).

Ans:

e(x+sin 2y) = ex · esin 2y

=

(
1 + x+

x2

2!
+
x3

3!
+ · · ·

)[
1 +

(
(2y)− (2y)3

3!
+ · · ·

)
+

((2y)− · · · )2

2!
+

((2y)− · · · )3

3!
+ · · ·

]

=

(
1 + x+

x2

2
+
x3

6
+ · · ·

)(
1 + 2y + 2y2 + · · ·

)
= 1 + x+ 2y +

x2

2
+ 2xy + 2y2 +

x3

6
+ x2y + 2xy2 + · · ·

Therefore, the required Taylor polynomial is 1 + x+ 2y +
x2

2
+ 2xy + 2y2 +

x3

6
+ x2y + 2xy2.

2. Find the Taylor polynomial of degree 6 generated by f(x, y) at the point (0, 0) if f(x, y) = ln(1 + x sin y).

Ans:

ln(1 + x sin y)

= (x sin y)− (x sin y)2

2
+

(x sin y)3

3
− · · ·

=

(
xy − xy3

3!
+
xy5

5!
+ · · ·

)
−

(
xy − xy3

3! + xy5

5! + · · ·
)2

2
+

(
xy − xy3

3! + xy5

5! + · · ·
)3

3
− · · ·

=

(
xy − xy3

3!
+
xy5

5!
+ · · ·

)
−
(
x2y2

2
− x2y4

6
+ · · ·

)
+

(
x3y3

3
+ · · ·

)
− · · ·

= xy − xy3

6
− x2y2

2
+
xy5

120
+
x2y4

6
+
x3y3

3
+ · · ·

Therefore, the required Taylor polynomial is xy − xy3

6
− x2y2

2
+
xy5

120
+
x2y4

6
+
x3y3

3
.

3. (Optional) Let f(x, y) = ex+2y.

(a) Evaluate

∫ 1/2

0

∫ 1/2

0

f(x, y) dx dy.

(b) i. Find the Taylor polynomial P2(x, y) of degree 2 generated by f(x, y) at the point (0, 0).

ii. Compute

∫ 1/2

0

∫ 1/2

0

P2(x, y) dx dy.

Is it a good approximation of the integral in (a)? Why?

Ans:
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(a) ∫ 1/2

0

∫ 1/2

0

f(x, y) dx dy =

∫ 1/2

0

∫ 1/2

0

ex+2y dx dy

=

∫ 1/2

0

[ex+2y]
1/2
0 dy

=

∫ 1/2

0

(
√
e− 1)e2y dy

=

[√
e− 1

2
e2y
]1/2
0

=
(
√
e− 1)(e− 1)

2
≈ 0.557343

(b) i. We have

ex+2y = ex · e2y

=

(
1 + x+

x2

2!
+ · · ·

)(
1 + 2y +

(2y)2

2!
+ · · ·

)
= 1 + x+ 2y +

x2

2
+ 2xy + 2y2 + · · ·

Therefore, P2(x, y) = 1 + x+ 2y +
x2

2
+ 2xy + 2y2.

ii. ∫ 1/2

0

∫ 1/2

0

P2(x, y) dx dy =

∫ 1/2

0

∫ 1/2

0

(
1 + x+ 2y +

x2

2
+ 2xy + 2y2

)
dx dy

=

∫ 1/2

0

[
x+

x2

2
+ 2xy +

x3

6
+ x2y + 2xy2

]1/2
0

dy

=

∫ 1/2

0

31

48
+

5

4
y + y2 dy

=

[
31

48
y +

5

8
y2 +

1

3
y3
]1/2
0

=
25

48
≈ 0.520833

We can see that the above is a good approximation since P2(x, y) is a good approximation of f(x, y)

around the point (0, 0).

4. Find the absolute maximum and minimum points of the functions on the given domains.

(a) f(x, y) = 2x2 − 4x+ y2 − 4y + 1 on the triangle bounded by the lines x = 0, y = 2 and y = 2x in the first

quadrant.

(b) f(x, y) = x2 + xy + y2 − 6x+ 2 on the rectangle bounded by the lines x = 0, x = 5, y = −3 and y = 0.

(c) f(x, y) = xy on the region D = {(x, y) : x ≥ 0, y ≥ 0 and x2 + y2 ≤ 4}.

Ans:

(a) Firstly, we have ∇f(x, y) = (4x−4, 2y−4), so ∇f(x, y) = (0, 0) when (x, y) = (1, 2). Therefore, there is no

stationary point in the interior of the triangle and there is a stationary point (1, 2) lying on the boundary.

Furthermore, the hessian matrix of f is

H(x, y) =

[
4 0

0 2

]
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and so

H(1, 2) =

[
4 0

0 2

]
.

Note that detH(1, 2) = 8 > 0 and fxx(1, 2) = 4 > 0, so f attains minimum at (1, 2) and we have

f(1, 2) = −5.

For the boundary:

• Let γ1(t) = (0, t) for t ∈ [0, 2]. We have f(γ1(t)) = t2 − 4t + 1 and so
d

dt
f(γ1(t)) = 2t − 4. Note

that
d

dt
f(γ1(t)) < 0 when 0 < t < 2. Therefore, f attains minimum along γ1 when t = 2 and

f(γ1(2)) = f(0, 2) = −3; f attains maximum along γ1 when t = 0 and f(γ1(0)) = f(0, 0) = 1.

• Let γ2(t) = (t, 2) for t ∈ [0, 1]. We have f(γ2(t)) = 2t2 − 4t − 3 and so
d

dt
f(γ2(t)) = 4t − 4. Note

that
d

dt
f(γ2(t)) < 0 when 0 < t < 1. Therefore, f attains minimum along γ2 when t = 1 and

f(γ2(1)) = f(1, 2) = −5; f attains maximum along γ2 when t = 0 and f(γ2(0)) = f(0, 2) = −3.

• Let γ3(t) = (t, 2t) for t ∈ [0, 1]. We have f(γ3(t)) = 6t2 − 12t + 1 and so
d

dt
f(γ3(t)) = 12t − 12.

Note that
d

dt
f(γ3(t)) < 0 when 0 < t < 1. Therefore, f attains minimum along γ3 when t = 1 and

f(γ3(1)) = f(1, 2) = −5; f attains maximum along γ3 when t = 0 and f(γ3(0)) = f(0, 0) = 1.

Therefore, the absolute maximum of f is 1 which is attained at (0, 0) and the absolute minimum of f is −5

which is attained at (1, 2).

(b) Firstly, we have ∇f(x, y) = (2x + y − 6, 2y + x), so ∇f(x, y) = (0, 0) when (x, y) = (4,−2). Therefore,

(4,−2) is the only stationary point and it lies in the interior of the rectangle.

Furthermore, the hessian matrix of f is

H(x, y) =

[
2 1

1 2

]
and so

H(4,−2) =

[
2 1

1 2

]
.

Note that detH(1, 2) = 3 > 0 and fxx(4,−2) = 2 > 0, so f attains minimum at (4,−2) and we have

f(4,−2) = −10.

For the boundary:

• Let γ1(t) = (0, t) for t ∈ [−3, 0]. We have f(γ1(t)) = t2 + 2 and so
d

dt
f(γ1(t)) = 2t. Note that

d

dt
f(γ1(t)) < 0 when −3 < t < 0. Therefore, f attains minimum along γ1 when t = 0 and f(γ1(0)) =

f(0, 0) = 2; f attains maximum along γ1 when t = −3 and f(γ1(−3)) = f(0,−3) = 11.

• Let γ2(t) = (t, 0) for t ∈ [0, 5]. We have f(γ2(t)) = t2 − 6t + 2 and so
d

dt
f(γ2(t)) = 2t − 6. Note that

d

dt
f(γ2(t)) < 0 when 0 < t < 3 and

d

dt
f(γ2(t)) > 0 when 3 < t < 5. Therefore, f attains minimum

along γ2 when t = 3 and f(γ2(3)) = f(3, 0) = −7; f attains maximum along γ2 when t = 0, t = 5, we

have f(γ2(0)) = f(0, 0) = 2 and f(γ2(5)) = f(5, 0) = −3.

• Let γ3(t) = (5, t) for t ∈ [−3, 0]. We have f(γ3(t)) = t2 + 5t− 3 and so
d

dt
f(γ3(t)) = 2t+ 5. Note that

d

dt
f(γ3(t)) < 0 when −3 < t < −5/2 and

d

dt
f(γ3(t)) > 0 when −5/2 < t < 0. Therefore, f attains

minimum along γ3 when t = −5/2 and f(γ3(−5/2)) = f(5,−5/2) = −37/4; f attains maximum along

γ3 when t = 0, t = −3, we have f(γ3(0)) = f(5, 0) = −3 and f(γ3(−3)) = f(5,−3) = −9.

• Let γ4(t) = (t,−3) for t ∈ [0, 5]. We have f(γ4(t)) = t2 − 9t + 11 and so
d

dt
f(γ4(t)) = 2t − 9.

Note that
d

dt
f(γ4(t)) < 0 when 0 < t < 9/2. Therefore, f attains minimum along γ4 when t = 9/2

and f(γ3(9/2)) = f(9/2,−3) = −37/4; f attains maximum along γ4 when t = 0, t = 5, we have

f(γ4(0)) = f(0,−3) = 11 and f(γ4(5)) = f(5,−3) = −9.
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Therefore, the absolute maximum of f is 11 which is attained at (0,−3) and the absolute minimum of f is

−10 which is attained at (4,−2).

(c) Firstly, we have∇f(x, y) = (y, x), so∇f(x, y) = (0, 0) when (x, y) = (0, 0). Therefore, there is no stationary

point in the interior of the region D and there is a stationary point (0, 0) lying on the boundary.

Furthermore, the hessian matrix of f is

H(x, y) =

[
0 1

1 0

]
and so

H(0, 0) =

[
0 1

1 0

]
.

Note that detH(0, 0) = −1 < 0, so (0, 0) is a saddle point of f and we have f(0, 0) = 0.

For the boundary:

• Let γ1(t) = (0, t) for t ∈ [0, 2]. We have f(γ1(t)) = 0 which is a constant function.

• Let γ2(t) = (t, 0) for t ∈ [0, 2]. We have f(γ2(t)) = 0 which is a constant function.

• Let γ3(t) = (2 cos t, 2 sin t) for t ∈ [0, π/2]. We have f(γ3(t)) = 4 sin t cos t = 2 sin 2t and so
d

dt
f(γ3(t)) =

4 cos 2t. Note that
d

dt
f(γ3(t)) < 0 when π/4 < t < π/2 and

d

dt
f(γ3(t)) > 0 when 0 < t < π/4.

Therefore, f attains minimum along γ3 when t = 0, t = π/2, we have f(γ3(0)) = f(2, 0) = 0 and

f(γ3(π/2)) = f(0, 2) = 0; f attains maximum along γ3 when t = π/4 and f(γ3(π/4)) = f(
√

2,
√

2) = 2.

Therefore, the absolute maximum of f is 2 which is attained at (
√

2,
√

2) and the absolute minimum of f

is 0 which is attained at (t, 0) or (0, t) for any t ∈ [0, 2].

5. Among all triangles with vertices on a given circle, find those that have the largest area.

Ans:

Intuition tells us that the equilateral triangles must have the largest area. However, proving this can be quite

difficult unless a good choice of variables in which to set up the problem analytically is made. With a suitable

choice of units and axes we can assume the circle is x2 + y2 = 1 and that one vertex of the triangle is the point

P with coordinates (1, 0). Let the other two vertices, Q and R, be as shown in figure below:

x

y

•

•

•
(1, 0)

P

Q

R

O

θ

φ

θψ

ψ φ

Where should Q and R be to ensure that triangle PQR has maximum area?

There is no harm in assuming that Q lies on the upper semicircle and R on the lower, and that the origin O

is inside triangle PQR. Let PQ and PR make angles θ and φ, respectively, with the negative direction of the

x-axis. Clearly 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ π/2. The lines from O to Q and R make equal angles with the line
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QR, where 2θ + 2φ+ 2ψ = π. Dropping perpendiculars from O to the three sides of the triangle PQR, we can

write the area A of the triangle as the sum of the areas of six small, right-angled triangles:

A = 2× 1
2 sin θ cos θ + 2× 1

2 sin θ cos θ + 2× 1
2 sinψ cosψ

= 1
2 (sin 2θ + sin 2φ+ sin 2ψ) .

Since 2ψ = π − 2(θ + φ), we express A as a function of the two variables θ and φ:

A = A(θ, φ) =
1

2
(sin 2θ + sin 2φ+ sin 2(θ + φ)) .

The domain of A is the triangle θ ≥ 0, φ ≥ 0, θ + φ ≤ π/2. A = 0 at the vertices of the triangle and is positive

elsewhere. (See the following figure)

θ

φ

•

• •

•

•

•

•(
π
6 ,

π
6

)
π/4

(
π
4 ,

π
4

)

π/4

π/2

π/2

θ + φ = π
2

The domain of A(θ, φ)

We show that the maximum value of A(θ, φ) on any edge of the triangle is 1 and occurs at the midpoint of that

edge. On the edge θ = 0 we have

A(0, φ) =
1

2
(sinφ+ sin 2φ) = sin 2φ ≤ 1 = A(0, π/4).

Similarly, on φ = 0, A(θ, φ) ≤ 1 = A(π/4, 0). On the edge θ + φ = π/2 we have

A
(
θ,
π

2
− θ
)

= 1
2 (sin 2θ + sin(π − 2θ))

= sin 2θ ≤ 1 = A
(
π
4 ,

π
4

)
.

We must now check for any interior critical points of A(θ, φ). (There are no singular points.) For critical points

we have

0 = ∂A
∂θ = cos 2θ + cos(2θ + 2φ),

0 = ∂A
∂φ = cos 2φ+ cos(2θ + 2φ),

so the critical points satisfy cos 2θ = cosφ and, hence θ = φ. We now substitute this equation into either of the

above equations to determine θ:

cos 2θ + cos 4θ = 0

2 cos2 2θ + cos 2θ − 1 = 0

(2 cos 2θ − 1)(cos 2θ + 1) = 0

cos 2θ =
1

2
or cos 2θ = −1.

The only solution leading to an interior point of the domain of A is θ = φ = π/6. Note that

A
(π

6
,
π

6

)
=

1

2

(√
3

2
+

√
3

2
+

√
3

2

)
=

3
√

3

4
> 1;

this interior critical point maximizes the area of the inscribed triangle. Finally, observe that for θ = φ = π/6,

we also have ψ = π/6, so the largest triangle is indeed equilateral.
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